DEVIATIONS FROM THERMODYNAMIC EQUILIBRIUM
DURING RECOMBINATION OF A DISPERSING PLASMA
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The relaxation of a dense low-temperature plasma during cooling of the electrons on heavy
particles and during dispersion of a plasma cluster into a vacuum is examined. The popula-
tion kinetics is analyzed in the limiting cases of free escape and radiation capture., The re-
sults are presented for a numerical solution of the self-consistent (with respect to tempera-
ture and concentration of free electrons) problem of the relaxation of an atomic hydrogen
plasma.

1. Relaxation Times. The study of the nonstationary process of decay of a dense, nonequilibrium,
low-temperature plasma requires taking into account the variation with time of a large number of param-
eters comnected amoung each other by nonlinear relationships. In many cases the relaxation times of dif-
ferent plasma characteristics differ sharply. This can be used to simplify the problem by taking the
faster processes as having become established and describing them in a quasi-stationary approximation
when considering the relaxation of the relatively slowly varying characteristics.

The following is a possible classification of relaxation times. The fastest process, whose charac-
teristic time is on the order of the time of several electron—electron collisions, is the ®"Maxwell® velocity
distribution of the free electrons, i.e., the formation of the electron temperature Te. In this time a Boltz-
mann distribution united with the continuum is established for the upper discrete levels of excitation of the
atoms whose ionization potential is on the order of T¢ or less. We determine these levels as belonging to
the quasi-equilibrium spectrum.

The next somewhat slower process is the establishment of a stationary sink of electrons with respect
to levels. In this case a quasi-stationary nonequilibrium population distribution of the lower excited levels
is formed, determined by the instantaneous values of the temperature T and concentration N, of free elec-
trons. The process of equalization of the temperatures of the free electrons and heavy particles has a
somewhat longer characteristic time.

The slowest process is the decrease in the density of free electrons through recombination and filling
of the ground state of the atoms. It leads to the establishment of an equilibrium distribution of electrons
over all the levels, if there are no steadily acting sources maintaining the nonequilibrium. The processes
of association of atoms into molecules and the relaxation of excited molecules will not be discussed here.

If at the initial time the plasma is far from an equilibrium state then in the course of relaxation it
passes through a series of stages corresponding to the processes enumerated above. The times of estab-
lishment of each stage of plasma decay depend strongly on the parameters of the plasma. In a dense low-
temperature plasma at high enough N, the electron collisions play the main role, so that atom—atom colli-
sions can be ignored in this case. The contribution of photorecombination and photoionization can also be
neglected in comparison with recombination during triple collisions and ionization by electron impact.

2. Statement of the Problem. We will confine ourselves to a study of a spatially homogeneous model
of the relaxation of a low-temperature plasma consisting of electrons, singly charged ions, and neutral
atoms. Suppose the concentration N of heavy particles varies with time by an exponential law
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N () = Ny (8o / £} 2.1)

Thus does the density vary in the inertial stage of dispersion of a plasma cluster. The parameter t;
is connected with the initial dimension r; of the cluster and the dispersion velocity u by the equation t) =r;/u.
The exponent p characterizes the dispersion geometry (1 =1, 2, 3); u=0 corresponds to a stationary plasma
cluster.

The equations of the population kinetics of excited levels of the atoms in a spatially homogeneous
model can be written in the form [1]

™
L= 2 Kol + D, — LN, =T, — Ly,
m=y

at (2.2)

n=1,2,...,m)
where Ny are the populations of discrete levels and n; is the number of discrete levels not joined with the
continuous spectrum. The matrix {Knm} is called a relaxation matrix. The nondiagonal element Knm
characterizes the number of transitions per unit time from state m to state n. The diagonal element K,
is equal in absolute value to the number of transitions per unit time from state n to all the other states.

The quantity Dy is equal to the number of particles per unit volume entering state n per unit time from the
continuum and the levels of the quasi-equilibrium spectrum joined with it.

Collisional transitions are characterized by a transition rate, i.e., the number of transitions per unit
time normalized to the concentration of particles giving rise to the transition.

The nondiagonal elements of the relaxation matrix can be written in the form
Kim=VouN, + A4, (n+m;n,m=1,2,..,n)

where V, is the transition rate from state m to state n from the effect of electron impact, and Ay, is the
rate of the spontaneous radiative transition m —n; Ay, =0 when m < n.

By definition the diagonal elements are
Kon = —( D K + szv,) n=1,2,...,n)

m=1
m+n

where Vep is the rate of ionization by electron impact.
The free term has the form
. D, =V, N2N, r=1,2,...,n)
where N_ is the ion concentration and Vpe is the rate of triple recombination.

To Egs. (2.1) and (2.2) must be added an equation of balance of heavy particles

"
N=N,+ 2 Nn 2.8)
m=]1
a condition of quasi-neutrality
N,=N, (2.4)

and, since recombination in a dense plasma leads to considerable heat release, an equation of heat balance,

From the point of view of the energy balance a low-temperature dense plasma can be considered as a
collection of three relatively weakly interacting subsystems, formed by the translational degrees of freedom
of the plasma electrons (A), the translational degrees of freedom of the heavy particles (B), and the energy
levels of the bound electrons (C). Subsystem (C) also loses energy through radiation.

The exchange of energy between subsystems (A) and (B) is produced by the temperature difference
AT =Tg—T (where T is the temperature of the heavy particles) and is accomplished by elastic collisions
between electrons and heavy particles; equalization of the temperatures T, and T is a relatively slow pro-
cess with a relaxation time 77T on the order of (vem/M)~!, where M is the mass of the heavy particles,
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m is the electron mass, and v, is the effective collision frequency of electrons with ions and neutral
particles. Inelastic collisions, accompanied by a change in electron binding energy, lead to energy ex-
change between subsystems (A) and (C).

Only a small fraction (~ m/M) of the change in binding energy is transferred to the heavy particles
during inelastic collisions of electrons with atoms or recombination collisions with fons. The contribution
of inelastic collisions between heavy particles is also small. Therefore, it can be assumed that direct ex-
change between subsystems (B) and (C) is practically absent,

The amount of heat transmitted to the heavy-particle gas (per unit volume and unit time) by free
electrons during elastic collisions equals [2]

Qe =3 (m’ / M)veNe(Te -~ 7)
The heat release in the electron gas through inelastic collisions is determined by the equation

y ™
Oi = Ne 2 Nn E Eanmn + En (VmNe2 - VenNn))
m=1

n=1 ',
men

where E, is the ionization energy of the n-thlevel and Ej,\, =Em—E,.

The heat-balance equations have the form

m
e 3 =
SN, PT.— NI 40— 0, (2.5)
=1
3 aT
NG =0 —NT (2.6)

Thus, the relaxation of a dense low-temperature plasma in the spatially homogeneous model of
inertial diffusion is described by the system of equations (2.1)-(2.6). Cauchy's problem is solved for this
system with the following initial conditions at t = t;:

Nn. (to)"__Nno (n=1,2,. --vnl)s Te (to) = TPO'I T(to) = TO

3. Method of Solution. Numerical solutions of Cauchy's problem are obtained with the help of an
electronic computer for a number of initial conditions both for a stationary plasma (u =0) and for the case
of spherical dispersion (p =3). The calculations are conducted for a partially ionized plasma of atomic
hydrogen. The relaxation matrix is taken from [3]. Calculations with different values of n, showed that
when n; =9 the results differ little. The following values of the plasma parameters were chosen to an order
of magnitude: t; 3 107" sec, Tgy ~Ty ¢ 1 eV, Ny ~ 10 cm™3, Ne~10% cm-3,

The difference of orders of magnitude in the relaxation times of the plasma characteristics was used
in the method of solution. The differential equations for the slowly varying parameters Ny, Tq, and T were
solved by the Runge —Kutta method with automatic step selection., The populations of excited levels N4,
(n=2,38,...,n;) weredetermined in a stationary sink approximation, i,e., from a system of ny—1linear algebraic
equations which is obtained from Egs. (2.2) if one sets the time derivatives equal to zero in them when
n = 2. This system was solved at each time step by Seidel’s integration method.
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The use of a quasi-stationary approximation in calculating the populations of excited levels is admis-
sible if the characteristic times 7, for the establishment of populations of levels with n = 2 are small com-
pared with 7, —the minimum of the characteristic times of variation of the plasma parameters Ny, N,

Tes T
T << Ta 3.1)

In the case of a stationary plasma
T, =1"=MAY ta=7%=N,|dN,/dt|?
where A, is the corresponding proper value of the relaxation matrix and 7, is the characteristic recom-
bination time of the electrons. In the case of a dispersing plasma i
o= @) e, w =g et
and the condition (3.1) can be represented in the form
(0t + pt) /(@) + peY) < 1 (3.2)
In the approximation of a stationary sink for n = 2 we obtain from (2.2) the estimate
Nof N~ (00) + i)
which permits us to rewrite (3.2) in the form
Nof/ N1/ (A + pr,t™) (3.3)

When p =0, i.e., in a stationary plasma, this condition Is converted into the criterion of applicability
of the stationary-sink approximation

N, /N, <1 (3.4)

1t is seen from (3.3) that the inequality (3.4) occurs whent > 7,°. In the case of an optically thin
plasma the value 71,° is limited from above by the value A;‘é ~ 10-? sec, i.e., the approximation of a sta-
tionary sink is valid in the entire range of parameters.

If the ratio 7, /7 is considered as a small parameter with the derivative in Eqs. (2.2) for n = 2, the
validity of using the stationary-sink approximation in calculating the population of excited levels can be
justified from a mathematical point of view [4].

The solution of the entire system of differential equations by the Runge —Kutta method or some other
traditional method without using the stationary-sink approximation would require a time step much smaller
than T, (atn =n,). Since we are considering a variation in plasma parameters over time intervals of
At S UN which exceed 7, by three to four orders of magnitude for the plasma parameters given above,
this would lead to extremely long calculation times and a loss of accuracy caused by the accumulation of

rounding errors.

4. Discussion of Results. Some results of a numerical solution of the system of equations (2.1)-
(2.6) for an optically thin stationary (u =0) plasma are presented in Figs. 1 and 2. The plasma is cooled
only through luminescence. The calculations are conducted withthe following initial conditions: Tgy=0.4 eV,
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T, =0.1 eV, N; =101 cm™3, Ny =0.99- 10 em™ (Fig. 1) and Tey =1 €V, Ty=0.1 eV, Ny =10¥ em™3, Ny =0 for
the solid curves and Nyy =0.9 10% ¢cm™3 for the dashed curves (Fig. 2); Ny, =0 for n=2, 3, ..., n;. The time
is laid out along the abscissa in a linear scale in Fig. 1 and in a logarithmic scale in Fig. 2. A linear tem-
perature scale in electron volts is placed on the right in both figures.

The initial temperature gap between T and T decreases over a time T ~M (mpe)~l. At alow
degree of ionization (& =0.01) a certain temperature gap is preserved rather long since the cooling of the
electron gas through elastic collisions Q is compensated for by recombination heating Q; (in Fig. 1 Q is
given in eV-cm=® - sec-1 oun the logarithmic scale to the left). At a high degree of ionization the tempera-
tures T, and T are practically equalized after a time on the order of 74 and subsequently remain identical
(in Fig. 2 the solid curve corresponds to ay=1 and the dashed curve to oy =0.1). Subsystem (C) continues
to heat subsystems (A) and (B) so that the electron temperature, having reached a minimum, begins to in-
crease slowly while the populations of excited levels Ny correspondingly decrease. The values of N, /g,
in em= are given in the logarithmic scale on the left in Fig. 2 and the numbering of the curves coincides
with the principal quantum numbers n of the corresponding levels (g, is the statistical weight of the level).

The calculations for the case of spherical dispersion (u =3), the results of which are presented in
Figs. 3 and 4, are conducted with the following initial conditions at ty=2.4 - 107 sec: T, =T;=0.88 eV, Ny =
5.2-10% cm=3, N;j=4.4 - 10%® cm-3 (@;=0.15) for M=14My, where My is the mass of a hydrogen atom.

The variation with time of a number of values is shown in Fig. 3 in the case of an optically thin
plasma (a) and with complete reabsorption of the Lyman series radiation (b). The values T2 10% eV?, Q;*
107¢ eV-cm=3-sec-!, B -10% cm®. sec~!, and Np/ g, cm=3, n=2, 3, 4, 5 refer to a single logarithmic scale
along the ordinate. The time is laid off in relative units in a logarithmic scale along the abscissa.

A characteristic property of the kinetics of a dispersing plasma is the appearance of a temperature
gap: Te and T decrease but the value (T, —T)/T increases with time. This is caused by the rapid shutting
off of the mechanism of cooling of electrons on heavy particles because of the drop in density. The reab-
sorption of radiation leads to an increase in heat release Qj in the electron gas and a decrease in the triple
recombination coefficient B. At first, when T, is large and the recombination coefficient {s small, Qj in a
transparent plasma can be larger than in an optically dense plasma, while the rate of temperature drop is
practically the same in the two cases. Then the heat release becomes greater under conditions of reab-
sorption of radiation than in a transparent plasma, while the temperatures T, and T decrease more slowly.

The time dependence of the triple recombination coefficient 8 shown by solid curves is obtained in
the solution of the self-consistent system of equations (2.1)-(2.6), with allowance for the entire set of
processes determining the populations of levels, and the electron concentration and temperature from the
equation

B= 2 (Vime = VeV [ (N.N,)) (4.1

M==t

The behavior of the recombination coefficient calculated from the equation [5]
p = 8.75-10"7 T, (4.2)

(Te is in electron volts), based on a model of diffusion of a bound electron in an atom along the energy axis,
is shown by a broken line in Fig. 3a for comparison. At the initial values of the parameters (T ~ 1 eV,
Ne~ 10% cm™3) the value of B8 given by Eq. (4.2) is about five times greater than the value obtained accord-
ing to (4.1), and only at Te € 0.1 eV and Ng ~ 101 cm™3 do the two equations give close values of the
triple recombination coefficient. This confirms the restricted nature of the region of applicability of the
"diffusion® model. (The region of applicability of Eq. (4.2) was discussed in [6].)

The reabsorption of radiation alters the nature of the population of levels especially strongly. If all
the radiation freely escapes from the plasma an inversion occurs in the population of the lower excited
levels n=2, 3, 4, 5 in the process of dispersion. If the radiation of the Lyman series is blocked, the inver-
sion does not occur and the population of level n=2 is anomalously large and drops more slowly than t=3.
This is connected with the fact that the effect of the collisional mechanism which, solely in this case, pro-
vides for the clearing of this level is weakened in proportion to the dispersion.

The reabsorption of Lyman-series radiation under conditions of dispersion leads to a continuous in-
crease in the effective relaxation time 7, of the first excited level, and 7, becomes greater than the
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a/a, T ) characteristic time of dispersion at some moment t=t,. This is
Py _ especially clearly seen from Fig. 4, where the energy E * transferred
\ to the electron gas in one act of recombination is laid out in eV in a
k J linear scale along the ordinate; the horizontal lines correspond to the
& hydrogen-atom energy levels and the principal quantum numbers n

are given on the right. In an optically thick plasma when t <t al-
most all the energy liberated in one act of recombination is trans-
ferred to subsystem (A), i.e., goes to heating electrons (curve 1), in
contrast to an optically thin plasma where a large part of the energy
is radiated off (curve 2). Whent > t; the heat release drops sharply
Fig. 5 to values characteristic for an optically thin plasma: although reso-
nance radiation remains blocked the mechanism of collisions ceases
to be effective and the energy is ®*frozen® in the first excited level.

N

/ 7 0 t7t,

For a transparent plasma a calculation of the fraction of energy transferred to the electrons (curve 2),
based on a solution of the system (2.1)-(2.6), gives a value close to that obtained in [7] using the model of
electron diffusion along the energy axis (curve 3). The freezing of the nonequilibrium population of the level
during rapid expansion of the plasma, accompanied by a decrease in the heat release per act of recombina-
tion, should also be expected in those cases where the atom has a’metastable state with a large excitation
energy (for example, in the case of inert gases).

The dependence of the degree ofionizationa on time during the spherical dispersion of a hydrogen plasma
into a vacuum is shown in Fig. 5. The initial conditions are given at the moment of breakdown of fonization
equilibrium t; =105 sec, estimated accordiag to [6]. Curve 1 corresponds to the case of Teo=Ty=1eV,
Np=1.7 - 10% ¢m=3, 0;=0.58 and curve 2 to the case of Tgy=Ty=1 eV, N;=4-10% ecm™3, ¢;=0.34. Curves
calculated in the diffusion model with the same initial conditions are presented in [7]. (In determining the
moment of breakdown of ionization equilibrium in {7] B was calculated from Eq. (4.2), which leads to t, =
2+107% sec.) :

The degree of ionization decreases somewhat faster in curve 1 (Fig. 5) and slower in curve 2 than in
the corresponding curves in [7], which there represent two qualitatively different cases: ™freezing® of the
unrecombined electrons and ions; recombination proceeds to the end and the degree of ionization is already
reduced to zero at t ~10t, (the authors of [7] explain this result by the approximate nature of the equations
which they used). Curve 3 corresponds to the same initial conditions as curve 2 but on the assumption of
reabsorption of radiation. Conditions are possible where in a plasma transparent for radiation recombina-
tion proceeds practically to the end during diffusion, but freezing occurs in the case of radiation capture.

It should be noted that for the resonance level n=2 inthe presence of reabsorption of radiation the
criterion of applicability of the quasistationary approximation (3.2) is satisfied only in the section t /t;< 3,
so that for longer times the results for an optically thick plasma may not be fully correct.

During rapid expansion of a dense low-temperature plasma besides ionization and temperature non-
equilibrium a nonequilibrium population of excited states can also arise. Experimental observations of these
deviations from thermodynamic equilibrium in an expanding plasma of hydrogen in a mixture with other
gases, and in particular the population inversion, are described in [8, 9]. The possibility of obtaining an
inverted population of levels in an expanding plasma was indicated in [10, 11]. Analogous results were ob-
tained in [12] for the relaxation of partially fonized xenon upon expansion in a nozzle.
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